
Treefoil: Visualization and Pair Wise Comparison of
File-system Trees

Shannon Bauman, James Clawson, Josh Cothran, Jeanie Miskelly, Zach Pousman
Georgia Institute of Technology

801 Atlantic Drive
Atlanta, GA 30332 USA

{baumas, jamer, infinite, miskelly, zpousman} @ cc.gatech.edu

ABSTRACT
Much work has been done to visualize single trees in
various domains, including those of biology (taxonomy)
genetics (genomics) and file systems. Much less attention
has been paid to the pair-wise comparison of trees to find
similarities and differences. We introduce a visualization
tool, Treefoil, to perform pair-wise comparisons on large
file system data. This tool is useful for systems
administrators and web developers in particular but also to
computer users in general. Our visualization technique
presents an overview and detail interface, based on a
dotplot for overview tasks and a dual pane file browser for
the detail views. This paper outlines the design of our
system, its implementation, and how it helps solves the
problems associated with pair-wise comparison of
hierarchical data structures.

Keywords
Information Visualization, Dotplot, Information Hierarchy,
Tree Comparison, File system browser

INTRODUCTION
Directed acyclic graphs, commonly called trees, are used in
most existing file systems. Trees are a data structure that the
majority intermediate and advanced computer users
understand and rely upon to do many tasks. Local file
browsers, remote file browsers (Gopher and FTP), web
sites, and even application menus tend to reflect this
structure in their GUI’s. Today’s existing tools and their
visual representations may be passable for viewing a single
hierarchy but are sub-optimal when it comes to the task of
comparing two trees. Treefoil is an information
visualization tool to assist in the comparison of two file
system hierarchies. Our tool is optimized to compare the
change from a tree a to a modified version of the same tree,
tree a’. Comparing trees a and a’ is relevant in many
situations; two of the most common are the comparing of
different backed-up versions of a hard drive or file system

and comparing an uploaded or FTPed website to the same
website stored on a local PC. A user wants to see how
similar the two trees are, where the differences lie (and their
character), among other tasks. We provide an answer to the
problem of comparing two instances of a tree structure that
have changed over time.

RELATED WORK
Several key advances punctuate the history of visualizing
directed graphs and file-system trees. The first visual
representations of trees began in WIMP systems with the
rise of personal computers. These visualizations were
predominantly textual, though they were interactive (folders
could be opened and closed, displaying their contents).
These systems were built into the GUI interfaces of various
operating systems and remained static until the 1990s, when
an explosion of systems attempted to bring true
interactivity, better representations of global structure, and
detailed information to hierarchies. Johnson and
Schneiderman [5] introduced tree-map visualizations for
file-system data (a system designed in response to the fact
that Dr. Shneiderman’s personal hard disk was rapidly
running out of space and his desire to know the exact
contents on the drive so that he could easily optimize and
organize). This visualization is planar and very space
efficient, showing well the global structure. Some problems
were identified, and these were solved or mitigated by
further work [1, 11, 12]. Other attempts to visualized file-
system data include Xerox Parc’s work to display file
hierarchies in three space [10], work to display hierarchies
in parabolic space [6], and even 3-Dimensional parabolic
space [7]. Yet none of these tools allow the comparison of
two file hierarchies.

A smaller body of work details the comparison of file-trees,
or any kinds of trees or graphs. Wittenburg and Sigman’s
Treeviewer [14] is a system that shows additions and
deletions to a web search query. Along with Huang and
Eades’ visualization of graphs [4], use animations to show
changes in hierarchical structure, at least to some degree.
Further, Graham, Kennedy, and Hand [2], discussed the
challenges of visualizing multiple overlapping hierarchies
(a related problem to ours, in the discipline of biological
taxonomy) and suggests that all visualization techniques
are a “choice between showing change over

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

 time or the change over space.” They suggest techniques
including the highlighting nodes of user-interest, and
filtering via clustering, neither of which has been explored
in the research literature.

Dotplots, a general coordinate matching approach for
comparisons of items, was developed extensively in the
biological sciences [7, 9]. It has since been applied to a
small degree in software visualization. Helfman [3] even
showed a file-tree comparison using dotplots, though his
real focus was on applying dotplots to software
visualization for programmers. That work is cited by others
building systems for software visualization. We take
Helfman’s work in a different direction, and introduce a
system for comparing file-trees using a dotplot
visualization.

DESIGN DETAILS
We present Treefoil, an information visualization tool that
supports the comparison of two file-system trees. The
application was designed around the requirements of file-
systems in particular. We outline a set of user tasks that
motivate the work.

1. Compare the file-system at a global level for
quick overview of similarities and differences.

2. Understand the changes that have occurred as
the tree was changed over time.

3. Identify additions or deletions from the tree.

4. Compare structural changes to the tree, the
reorganizations of the folders and files.

5. Locate files of interest (new files, large files,
popular files) and get details on these items.

6. View details of files and folders including
attributes like name, create date, creator,
owner, hitCount (for internet pages), size, etc.
Possibly, a user wants to compare two or more
pages’ details.

Our design consists of two interactive visualizations. First is
a Dotplot View. The dotplot view provides a basic
overview of the level of similarity of the two trees and
visually highlights areas of interest. Second, a Tree-view
Inspector allows the user to more thoroughly explore the
structure of the two trees. These two visualizations work
together to provide a system of overview and detail. The
dotplot view provides global overview and the tree-view
inspector provides details.

The application provides users with powerful interactive
tools in the dotplot overview. A docking palette
implementing Dynamic Query sliders allows users to
specify constraints on the view. Users can quickly highlight
files and folders of interest based on a variety of criteria

(including hit count, size, and age, as well as additions and
deletions). In the detailed Tree-view Inspector, we have
designed a set of Contextual Anchors, which supplements
tree comparison in the tree-view inspector. We discuss
each of these aspects of the tool in further detail here.

Dotplot View
The overview visualization, a modified dotplot, provides
the user with a quick assessment of the differences between
two trees. A dotplot is a simple visualization of comparison.
We give an example of a very simple dotplot in Figure 1.
The two structures to be compared are subdivided into their
constituent elements, be they lines of code, sequences of
nucleic acid, or files and folders. The list of elements is
arranged according to a preorder traversal along the axes of
a cartesian plane. A dot (or, when the number of parts is
small, a dash) is placed at every point where nodes from
both trees are identical.

By glancing at the graph, a user can quickly evaluate the
overall similarity of the two trees. If the trees are identical,
a diagonal line is drawn (Figure 1), projecting from the
origin. Many scattered dots indicate that the trees are
structurally very different. This technique shows a
translocated subtree as a space-shifted line segment (Figure
2). Duplicated files will be visible because a node from one
will match multiple nodes from the other tree.

Figure 1: Identical Trees

Figure 2: Shifted Subtree

The absence of dots indicates that nodes on one tree do not
match any of the nodes on the other tree; hence nodes were
either added or deleted. This results in columns or rows
without any dots. Color can be added to better show these
additions or deletions. In Figure 3, the red horizontal lines
show the nodes that were deleted from tree a. The green
vertical lines show the new nodes in tree a’.

Figure 3: Deleted, Added, and Shifted Nodes

Figure 4 shows what a segment of a typical file system may
look like. It shows an example of an addition, a deletion, as
well as an example of a duplication of a whole folder.

Figure 4: Deleted, Added and Duplicated Nodes

Interaction
Figure 5 shows two different features of the application that
has been designed. In this figure, the two axes do not have
labels, but instead show green and blue pixels. The green
pixels here represent files and the blue pixels represent
folders. Labels are not used on these axis because of the
large number of nodes represented on the screen. However,
as the user moves the mouse around the interface, a “detail”
window moves with the mouse. When the detail window
hovers over a colored pixel, it will display the name of the
files or folders over which it is hovering. When the user
clicks the mouse button, it will drop the detail window at
that location. The user will then be able to “nudge” the
window up or down to see other files that are close to where
the window was originally placed. The window can be
raised back to its hover state and moved again by clicking

outside of the boxed area. By clicking on one of the file or
folder names, the user will be brought to the Tree-view
Inspector (mentioned later) at that location in the file
structure.

In our original designs, we suggested rotating the dotplot
45°. We did so for two reasons. First, a rotated dotplot
would place the center “match” line as a vertical, instead of
a diagonal. We felt that this would assist the mental
modeling and reading of the visualization since a user
would more easily track the dots. Second, a rotation
afforded the ability to place labels on the axes horizontally.
This would, intuitively, be much easier to read. However,
this was not implemented in the current application. We
have a standard, non-rotated dotplot instead.

Figure 5: Using the detail window to show file names�

Dynamic Query Palette
Dynamic interaction is key to the success of our tool.
Systems such as UMD’s Home Finder [13] have
successfully incorporated dynamic interaction with data by
the use of a palette and we have found that they are
particularly useful for intensive exploration of data. A
palette is essentially a bounded section of the screen that is
sometimes moveable, and sometimes locked into a location.
A pallet normally contains various types of interaction
widgets, including sliders and check boxes.

These types of palettes offer a good way for the user to
explore trees based on attribute criteria. A visualization of
the concept is illustrated below (Figure 6). This design
allows a user to inspect all the data to determine the lower
and upper bounds of a particular variable of the dataset. It
also affords the viewing of a range of values for example
files that are larger than 500k but smaller than 1 MB. The
design applies the same methods to each of the variables,
letting users build complex queries easily and quickly.

The interface would reflect the changes made by the user by
highlighting and fading. As the user makes a dynamic
query, nodes that fall into the specifications of that query
will be highlighted in a user-selected color. Nodes that are
no longer within the query terms will turn gray. This will
allow the user still see the context of the whole hierarchy,
but also see the items that match the query.

Another aspect of the palette would allow the user to select
specific tools to assist in analyzing the trees. One such tool
highlights both deleted and added files, thus making them
more obvious to the user. Another sets the folder depth of
the inspector view. This allows users to configure a global
setting for folder depth allowing a traversal of n levels
down, or allowing a traversal of the entire depth. These
dynamic interactions afford efficient browsing of the
similarities and differences between two trees.

The Tree-view Inspector
The Tree-view Inspector is the portion of the application
that affords the user the ability to focus on specific files or
folders for direct comparison. The visualization used for
this detail oriented work is a side-by-side pairing of the
canonical “explorer view” provided by many existing
operating systems. We chose this display in part because of
its ubiquity and familiar operation. In our design, the
features of a standard (single tree view) file system explorer
are maintained, but extended to deal with our comparison
tasks. Some details of the representational aspects and the
animations are shown below (Figure 7).

We propose an animated transition between the two
visualizations. The Tree-view Inspector is a detail view,
while the Dotplot view is an overview. When a user
launches the tool, the first visualization available to her is
the Dotplot overview. When a user requires further details

Figure 6: Dynamic Query Palette

into the structure of the tree, or metadata regarding a folder
or file, she may click on a point in the Dotplot view to bring
up the Tree-view Inspector. The animation we designed
shrinks the Dotplot to an iconographic representation while
at the same time bending the two arms of the dotplot
towards vertical. At the end of the transition, the Tree-View
Inspector is full-sized and manipulable.

We attempt to keep certain elements of both visualizations
constant to assist users in interacting with the system
effectively (and minimizing learning time). The color-
coding of folder and file information, as well as the colors
of added, deleted, and highlighted files is the same between
the two views. Also, the application opens the Tree-view
Inspector to the exact file or folder that was selected in the
Dotplot view, opening whatever folders are necessary to
make the file in question visible. Lastly, we design a
symmetric operation, which lets a user switch from the
Tree-view Inspector to the Dotplot with a single click on
the small version of the Dotplot. Whatever file or folder the
user had selected at the time becomes the item of focus in
the Dotplot view.

The Tree-view Inspector works analogously to the
Microsoft Windows file explorer. A fundamental
interaction is the user’s ability to open and close folders and
sub-folders to “drill-down” to files of interest. Tabular
fields of metadata hold the size, hit count, creation date and
other attributes of each file and folder. An important
addition to the functionality provided is the use of a
keystroke to toggle the browsing mode. A user can browse
the two trees in an unconstrained mode and in a
constrained mode. In the unconstrained mode, an action on
one tree, a click to expand a folder say, changes only the
clicked file tree. In the constrained interaction mode
(actuated by the user holding down the � or the ctrl key), a
browsing operation is mirrored between the two trees. If a
folder is not present, having been added only to one of the
trees being explored, then no action is taken. We also
introduce the notion of contextual anchors below which
extends the functionality of the visualization tool even
further.

Contextual Anchors
Contextual Anchors are a way to provide further interactive
control in the Tree-view Inspector. We wanted to provide
interactive tools so that users can more effectively navigate
as well as continue to keep some elements of structure
visible in the details view (the detail view being limited to
approximately 25 items per tree). For example, a user may
seek to track the location of a single file or folder or a
group of items from the a tree to the a’ tree and Contextual
Anchors make this easy. We detail the designs in this
section for three kinds of Contextual Anchors, however, the
constraints of time prevent us from implementing all of
them.

Stretchable Context Anchors:
Stretchable Context Anchors visually connect a pair of
identical folders or files of interest in the two file
hierarchies. This is accomplished via stretchable “rubber
bands,” with barbell ends. There are 16 possible rubber
band colors, and one color is associate with one pair of
files. In the application a user would click on an icon or
name or invoke a menu. The menu would provide the
following functionality:

Create Context Anchor – This would allow a user to
create the context anchor and select a color for it (from one
of 16 easily differentiated colors)

Snap to Context Anchor – This option would allow a user
to bring the matching file in the other file system to the
same vertical position on the screen, “snapping” them
together using the current file-system as the focus of the
operation.

Snap to Matching Context Anchor – Allows a user to
snap the current display to the other identical file, forcing
the current tree to open and close folders to match it
(instead of the other way around as in 2).

When a user clicks on an existing Context Anchor at either
the endpoints or the line itself, a similar contextual menu is
displayed. It contains similar elements, but with the ability
to turn off the selected Context Anchor or all of the Context
Anchors, as in Figure 8.

The other two applications of contextual anchors are more
involved. The first, which we call the Overlay approach,
superimposes the two trees (with 100 pixels of horizontal
offset). Since the tool is specialized to deal with trees that
are similar to one another, a single set of labels could be
used for at least some of overlapping trees Transparency
and other contextual feedback could be used to assist in
comparison.

Figure 7: Tree-view Inspector: The two file system
hierarchies are shown side by side.

The third application, which we call the Morph approach,
actually takes the first tree (a) and animates it into the
second tree (a’) over a specified period of time. In this
approach, our use of Contextual Anchors is a direct analog
to Macromedia Flash’s shape hints. In both techniques,
Contextual Anchors provide an opportunity for the user to
“sculpt” the visualization. We have found the use of
techniques to be invaluable in these more Cartesian-
oriented domains, and are interested in testing the utility of
user-guided information visualization in this domain.

Figure 8: Context Anchors. The Context anchors are the
barbells between identical files in the two hierarchies.
Shown also is the contextual menu that appears with a user
click.

IMPLEMENTATION
This system was created in Java 1.4.1 for deployment onto
personal computers. The software reads in two XML files
as parameters, and then displays the comparison of the two
trees stored within the files. The XML schema stores both
trees are stored in the XML files in a depth first manner, a
convention that is maintained in our visualization.

A compromise was made related to the number of nodes the
application could take in to analyze. While 60,000-100,000
nodes would have been preferred, we settled for visualizing
3,000-5,000 nodes. This was due mostly to the processing
power and memory requirements of the machines we were
using. Currently, it takes around 10 seconds to read in,
store, and then display 3,000 nodes. This is a number that
we hope to be an acceptable one-time-only pre-loading time
for users.

The implementation of the system focused primarily on
creating the Dot Plot view, as well as the Tree-View
Inspector and being able to switch intelligently between the
two. Other features such as the dynamic query sliders were
not implemented as designed. We chose to implement a
palette that had the same basic functionality without the
performance problems common to Dynamic Queries. This
was due in large part to time constraints, as well as to
limited programming experience by the team. It is
something that will be done in future work.

Figure 9: The implemented Treefoil application. The
dotplot view shows the crosshairs on a particular file. The
Tree-view Inspector shows files highlighted by creation
date.

FUTURE WORK
One feature that is to be added to the system at a later time
is the contextual anchors. Java code has been found that
can be molded into our system to fit these needs.

Dynamic Queries have always been a fundamental part of
the design of the system, and therefore will be fully
implemented in the future. These will allow for smooth
interaction with the system by the user.

The initial design of the application had the dot-plot view
rotated at a 45° angle. This would allow for the user to
view the results of the plot by scanning straight down the
page, as apposed to scanning diagonally across the page.

The zoom windows on the dot plot have not yet been
implemented. The dynamically changing zoom window
may be processor intensive, and therefore may pose a
problem to implement. In addition, the idea of allowing
multiple zoom windows has been brought forth, and may
also be pursued at a later time.

The other major area of future work is in user testing.
Testing needs to be done on multiple different fronts to see
the effectiveness of this interface in use. Though there are
not many existing systems, we would like to perform
quantitative as well as qualitative studies to determine the
system’s effectiveness , efficiency, and likeability.

CONCLUSION
In this paper we presented Treefoil a dynamic tool that aids
a user in the cognitive tasks associated with the pair-wise
comparison of two hierarchical data structures. Specifically
it address the ways in which our tool affords the user the
ability to easily recognize and identify changes between two
trees and, in addition, accomplish the more fine grained
tasks of identifying node additions, deletions,
translocations, and duplications.

The system design introduces the idea of interactive dotplot
views for file system data. As well, we introduce a dual-
pane tree explorer that uses two standard tree explorers in
an innovative way to allow the constrained viewing of
folders and files among the two trees of comparison.
Stretchable contextual anchors, visual representations of
matching between two identical files are also brought to
bear on this domain. Our stretchable context anchors act as
interaction elements to focus and refocus the detail views.
The Treefoil system as implemented does not contain some
of these features. We plan to implement them in further
iterations of the application (see Future Work) as well as to
perform a user evaluation on the system to determine its
applicability to professional and casual computer users.

ACKNOWLEDGMENTS
We wish to acknowledge John Stasko, James Eagan, and
the whole of the CHI community. Also, our moms.

REFERENCES
1. Bruls, M., Huizing, K. and Wijk, J. J. v. (2000).

Squarified Treemaps. Proc. of VisSym '00 (May 2931,

Amsterdam, The Netherlands), Springer Wien New
York, 33-42.

2. Graham, M., Kennedy, J. B. and Hand, C. The
Challenge of Visualising Multiple Overlapping
Classification Hierarchies. Proc. of User Interfaces to
Data Intensive Systems (UIDIS '99) (Edinburgh, UK,
September 5-6, 1999), IEEE Computer Society Press,
42-5

3. J. Helfman, (1995) Dotplot Patterns: a Literal Look at
Pattern Languages , TAPOS, 2(1):31-1,1995

4. Huang, M. L., Eades, P. and Wang, J., On-line
Animated Visualization of Huge Graphs using a
Modified Spring Algorithm. Journal of Visual languages
and Computing, 1998, 9 (6): 623-645.

5. Johnson, B. and Shneiderman, B., (1991) Treemaps: A
SpaceFilling approach to the visualization of
hierarchical information structures, in Proc. IEEE
Visualization '91, pp. 284-291, San Diego, IEEE
Computer Society Press

6. John Lamping and Ramana Rao.(1994) Laying out and
visualizing large trees using a hyperbolic space . In
Proceedings of UIST'94, pages 13--14, 1994

7. Maizel J., and Lenk, R., (1981) Enhanced graphic
matrix analysis of nucleic acid and protein sequences.
Proceedings of the National Academy of Science,
Genetics, USA, volume 78, pages 7665–7669,

8. Munzner, T., 1997, H3: Laying Out Large Directed
Graphs in 3D Hyperbolic Space , IEEE Symposium on
Information Visualization

9. Pustell, J., and Kafatos, F. (1982) A high speed, high
capacity homology matrix: Zooming through sv40 and
polyoma. Nucleic Acids Research, 10(15): 4765–4782

10. Robertson, G. G., Mackinlay, J. D., and Card, S. K. "
Cone trees: Animated 3D visualizations of hierarchical
information." Proc. of CHI '97, New Orleans, LA, 189-
194.

11. Stasko, John, Catrambone, Richard, Guzdial, Mark and
McDonald, Kevin, (2000) An Evaluation of Space-
Filling Information Visualizations for Depicting
Hierarchical Structures, International Journal of
Human-Computer Studies, Vol. 53, No. 5, November
2000, pp. 663-694.

12. van Wijk, J. J. and van de Wetering, H. (1999). Cushion
Treemaps: Visualization of Hierarchical Information.
Proc. of IEEE InfoVis '99 (October 25-26, San
Francisco, California, USA), IEEE Computer Society
Press, 73-78.

13. Williamson,C. and Shneiderman B. (1992) The
Dynamic HomeFinder: Evaluating Dynamic Queries in
a Real-Estate Information Exploration System. In Proc
of ACM SIGIR 92 (June 1992), 338 -- 346.

14. Wittenburg ,K.and Sigman ,E., (1997) Visual Focusing
and Transition Techniques in a Treeviewer for Web
Information Access , in Proc. Visual Languages '97, pp.
20-27, Capri, Italy, Sept 23-26, 1997. IEEE Computer
Society Press.

15. Wittenburg ,K.and Sigman ,E., (1997) Visual Focusing
and Transition Techniques in a System for Web
Information Access , in Proc. Visual Languages '97, pp.
20-27, Capri, Italy, Sept 23-26, 1997. IEEE Computer
Society Press.

